Papers
Preprints
The algebraic cheap rebuilding property
Kevin Li, Clara Löh, Marco Moraschini, Roman Sauer, Matthias Uschold
arxiv:2409.05774, 2024. [arXiv]Uniform waist inequalities in codimension two for manifolds with Kazhdan fundamental group
Uri Bader, Roman Sauer
arxiv:2407.19783, 2024. [arXiv]On homological properties of the Schlichting completion
Laura Bonn, Roman Sauer
arxiv:2406.12740, 2024. [arXiv]Higher Kazhdan property and unitary cohomology of arithmetic groups
Uri Bader, Roman Sauer
arxiv:2308.06517, 2023. [arXiv]
Published
Stability and instability of lattices in semisimple groups
Uri Bader, Alexander Lubotzky, Roman Sauer, Shmuel Weinberger
J. Anal. Math., 2023. [Journal] [arXiv] [MathSciNet]Amenable covers and integral foliated simplicial volume
Clara Löh, Marco Moraschini, Roman Sauer
New York J. Math., 2022. [Journal] [arXiv] [MathSciNet]Volume and macroscopic scalar curvature
Sabine Braun, Roman Sauer
Geom. Funct. Anal., 2021. [Journal] [arXiv] [MathSciNet]Profinite invariants of arithmetic groups
Holger Kammeyer, Steffen Kionke, Jean Raimbault, Roman Sauer
Forum Math. Sigma, 2020. [Journal] [arXiv] [MathSciNet]S-arithmetic spinor groups with the same finite quotients and distinct ℓ²-cohomology
Holger Kammeyer, Roman Sauer
Groups Geom. Dyn., 2020. [Journal] [arXiv] [MathSciNet]Bounded cohomology of amenable covers via classifying spaces
Clara Löh, Roman Sauer
Enseign. Math., 2020. [Journal] [arXiv] [MathSciNet]Homology and homotopy complexity in negative curvature
Uri Bader, Tsachik Gelander, Roman Sauer
J. Eur. Math. Soc. (JEMS), 2020. [Journal] [arXiv] [MathSciNet]Lattice envelopes
Uri Bader, Alex Furman, Roman Sauer
Duke Math. J., 2020. [Journal] [arXiv] [MathSciNet]An adelic arithmeticity theorem for lattices in products
Uri Bader, Alex Furman, Roman Sauer
Math. Z., 2019. [Journal] [arXiv] [MathSciNet]Counting maximally broken Morse trajectories on aspherical manifolds
Caterina Campagnolo, Roman Sauer
Geom. Dedicata, 2019. [Journal] [arXiv] [MathSciNet]Vanishing of ℓ²-Betti numbers of locally compact groups as an invariant of coarse equivalence
Roman Sauer, Michael Schrödl
Fund. Math., 2018. [Journal] [arXiv] [MathSciNet]ℓ²-Betti number of discrete and non-discrete groups
Roman Sauer
London Math. Soc. Lecture Note Ser., 447 (Book chapter), 2018. [Journal] [arXiv] [MathSciNet]ℓ²-Betti numbers of totally disconnected groups and their approximation by Betti numbers of lattices
Henrik Densing Petersen, Roman Sauer, Andreas Thom
J. Topol., 2018. [Journal] [arXiv] [MathSciNet]Topological models of finite type for tree almost automorphism groups
Roman Sauer, Werner Thumann
Int. Math. Res. Not. IMRN, 2017. [Journal] [arXiv] [MathSciNet]Cantor systems and quasi-isometry of groups
Kostya Medynets, Roman Sauer, Andreas Thom
Bull. Lond. Math. Soc., 2017. [Journal] [arXiv] [MathSciNet]Integral foliated simplicial volume of aspherical manifolds
Roberto Frigerio, Clara Löh, Cristina Pagliantini, Roman Sauer
Israel J. Math., 2016. [Journal] [arXiv] [MathSciNet]Volume and homology growth of aspherical manifolds
Roman Sauer
Geom. Topol., 2016. [Journal] [arXiv] [MathSciNet]On the structure and arithmeticity of lattice envelopes
Uri Bader, Alex Furman, Roman Sauer
C. R. Math. Acad. Sci. Paris, 2015. [Journal] [arXiv] [MathSciNet]ℓ²-invisibility and a class of local similarity groups
Roman Sauer, Werner Thumann
Compos. Math., 2014. [Journal] [arXiv] [MathSciNet]On the growth of Betti numbers in p-adic analytic towers
Nicolas Bergeron, Peter Linnell, Wolfgang Lück, Roman Sauer
Groups Geom. Dyn., 2014. [Journal] [arXiv] [MathSciNet]Weak notions of normality and vanishing up to rank in ℓ²-cohomology
Uri Bader, Alex Furman, Roman Sauer
Int. Math. Res. Not. IMRN, 2014. [Journal] [arXiv] [MathSciNet]On the cohomology of weakly almost periodic group representations
Uri Bader, Christian Rosendal, Roman Sauer
J. Topol. Anal., 2014. [Journal] [arXiv] [MathSciNet]Integrable measure equivalence and rigidity of hyperbolic lattices
Uri Bader, Alex Furman, Roman Sauer
Invent. Math., 2013. [Journal] [arXiv] [MathSciNet]Efficient subdivision in hyperbolic groups and applications
Uri Bader, Alex Furman, Roman Sauer
Groups Geom. Dyn., 2013. [Journal] [arXiv] [MathSciNet]Spectral distribution and ℓ²-isoperimetric profile of Laplace operators on groups
Alexander Bendikov, Christophe Pittet, Roman Sauer
Math. Ann., 2012. [Journal] [arXiv] [MathSciNet]Euler characteristics of categories and homotopy colimits
Fiore, Thomas M., Wolfgang Lück, Roman Sauer
Doc. Math., 2011. [Journal] [arXiv] [MathSciNet]Finiteness obstructions and Euler characteristics of categories
Thomas M. Fiore, Wolfgang Lück, Roman Sauer
Adv. Math., 2011. [Journal] [arXiv] [MathSciNet]The limit of F_p-Betti numbers of a tower of finite covers with amenable fundamental groups
Peter Linnell, Wolfgang Lück, Roman Sauer
Proc. Amer. Math. Soc., 2011. [Journal] [arXiv] [MathSciNet]ℓ²-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence
Wolfgang Lück, Roman Sauer, Christian Wegner
J. Topol. Anal., 2010. [Journal] [arXiv] [MathSciNet]A spectral sequence to compute ℓ²-Betti numbers of groups and groupoids
Roman Sauer, Andreas Thom
J. Lond. Math. Soc. (2), 2010. [Journal] [arXiv] [MathSciNet]Amenable covers, volume and ℓ²-Betti numbers of aspherical manifolds
Roman Sauer
J. Reine Angew. Math., 2009. [Journal] [arXiv] [MathSciNet]Simplicial volume of Hilbert modular varieties
Clara Löh, Roman Sauer
Comment. Math. Helv., 2009. [Journal] [arXiv] [MathSciNet]Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume
Clara Löh, Roman Sauer
J. Topol., 2009. [Journal] [arXiv] [MathSciNet]Volume and ℓ²-Betti numbers of aspherical manifolds
Roman Sauer
Trends in mathematics. Proceedings of the Courant Colloquium, University of Göttingen, 2008. [Journal] [arXiv] [MathSciNet]Homological invariants and quasi-isometry
Roman Sauer
Geom. Funct. Anal., 2006. [Journal] [arXiv] [MathSciNet]ℓ²-Betti numbers of discrete measured groupoids
Roman Sauer
Internat. J. Algebra Comput., 2005. [Journal] [arXiv] [MathSciNet]Power series over the group ring of a free group and applications to Novikov-Shubin invariants
Roman Sauer
Proceedings of the School, ICTP, Trieste, on High-dimensional manifold topology, 2003. [Journal] [arXiv] [MathSciNet]